16320 measured reflections

 $R_{\rm int} = 0.024$

refinement $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

4847 independent reflections

3225 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Hydroxy-4-(methacryloyloxy)acetophenone

G. Chakkaravarthi,^a A. Anthonysamy,^b S. Balasubramanian^b and V. Manivannan^c*

^aDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, ^bDepartment of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Physics, Presidency College, Chennai 600 005, India

Correspondence e-mail: manivan_1999@yahoo.com

Received 1 August 2007; accepted 21 September 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.001 Å; disorder in main residue; R factor = 0.047; wR factor = 0.166; data-to-parameter ratio = 26.2.

In the title compound, $C_{12}H_{12}O_4$, the acetyl group is coplanar with the benzene ring, the dihedral angle being $1.00 (7)^{\circ}$; the methacryloyloxy group makes a dihedral angle of 34.67 (4)° with the benzene ring. The methyl and methylene groups in the terminal site are disordered equally over two positions. The molecular structure is stabilized by intramolecular O- $H \cdots O$ and $C - H \cdots O$ hydrogen bonds and the crystal packing is stabilized by intermolecular C-H···O and C-H··· π interactions.

Related literature

For related literature, see: Gibson et al. (2006); Naka & Kubo (1999); Nicolaides et al. (1998); Parker & Braden (1989); Ren et al. (2006); Romero (2001). A similar acetophenone compound with a methyl group has been reported by Chakkaravarthi et al. (2007).

Experimental

Crystal data

$C_{12}H_{12}O_4$	$\gamma = 65.866 \ (1)^{\circ}$
$M_r = 220.22$	V = 546.09 (3) Å ³
Triclinic, P1	Z = 2
a = 6.6413 (2) Å	Mo $K\alpha$ radiation
b = 7.2833 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 12.4387 (4) Å	T = 295 (2) K
$\alpha = 84.020 \ (1)^{\circ}$	$0.25 \times 0.16 \times 0.15 \text{ mm}$
$\beta = 87.447 \ (2)^{\circ}$	

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.966, T_{\max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	
$wR(F^2) = 0.166$	
S = 1.04	
4847 reflections	
185 parameters	
2 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C5–C10 ring.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···O4	0.82	1.81	2.5334 (10)	147
C10−H10···O1	0.93	2.40	2.8163 (12)	107
$C7-H7\cdots O3^i$	0.93	2.43	3.3372 (11)	164
$C12-H12C\cdots Cg^{ii}$	0.96	2.81	3.6718 (12)	149

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2203).

References

- Bruker (2004). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakkaravarthi, G., Anthonysamy, A., Manivannan, V. & Balasubramanian, S. (2007) Acta Cryst E63 03404
- Gibson, C. L., Huggan, J. K., Kennedy, A. R. & Suckling, C. J. (2006). Acta Cryst. E62, 0324-0326.
- Naka, T. & Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.
- Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715-724.
- Parker, S. & Braden, M. (1989). Biomaterials, 10, 91-95.

Ren, R., Li, X.-M., Li, Q. & Zhang, S.-S. (2006). Acta Cryst. E62, 0293-0294.

Romero, J. R. (2001). Exp. Opin. Invest. Drugs, 10, 369-379.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4163 [doi:10.1107/S1600536807046478]

2-Hydroxy-4-(methacryloyloxy)acetophenone

G. Chakkaravarthi, A. Anthonysamy, S. Balasubramanian and V. Manivannan

Comment

Methacrylate derivatives have anti-inflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties and are efficient as agonists for different receptors (Naka & Kubo, 1999). Methacrylate activated vinyl esters are readily polymerized by free-radical polymerization to form linear, branched or network polymers (Parker & Braden, 1989).

The geometric parameters in (I) (Fig. 1) are comparable with the reported values of similar compounds (Gibson *et al.*, 2006; Ren *et al.*, 2006). A similar acetophenone compound with methyl group has been reported (Chakkaravarthi *et al.*, 2007). The acetyl group is planar with the benzene ring [dihedral angle of 179.00 (7)°] and the methacryloyloxy group makes the dihedral angle of 34.67 (4)° with the benzene ring. The torsion angles O2—C4—C2—C3 and O2—C4—C2—C1 [-0.2 (6)° and 178.1 (8)°, respectively] indicate periplanar conformation of the respective moieties. The methyl and methyl-ene groups in the terminal site are disordered over two positions with site occupancy factors of 0.50 (2). The molecular structure is stabilized by intramolecular O—H…O and C—H…O interactions and the crystal packing of (I) (Fig. 2) is stabilized by an intermolecular C—H…O hydrogen bond and a C—H… π interaction, involving the benzene C5—C10 ring (Table 1).

Experimental

2,4-Dihydroxyacetophenone (4.2 g, 27.60 mmol), triethylamine (3.85 ml, 27.67 mmol) and 150 ml of dry 2-butanone were taken in a 250 ml round bottom flask and the temperature was maintained at 273 K. Then the solution of methacryloylchloride (2.7 ml, 27.74 mmol) in 20 ml of 2-butanone was added dropwise to the mixture with constant stirring for 30 min. After the addition was over, the reaction mixture was stirred for another 6 h. The salt formed during the reaction was filtered and the filtrate was washed with water and dried over anhydrous MgSO₄. The filtrate was concentrated under reduced pressure and the crude product was purified by column chromatography (silica) using hexane and ethyl acetate mixture (9:1). Crystals suitable for X-ray analysis were grown by slow evaporation of an ethyl acetate solution.

Refinement

The site occupancy factors of the disordered methyl and methylene groups refined to 0.50 (2). H atoms for methylene C atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and refined as riding, with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl C, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, with O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$ for OH. The distance restraints were applied to the disordered methylene C atoms.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing diagram of (I), viewed approximately down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

2-Hydroxy-4-(methacryloyloxy)acetophenone

Crystal data	
C ₁₂ H ₁₂ O ₄	Z = 2
$M_r = 220.22$	$F_{000} = 232$
Triclinic, PT	$D_{\rm x} = 1.339 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
<i>a</i> = 6.6413 (2) Å	Cell parameters from 6586 reflections
b = 7.2833 (3) Å	$\theta = 3.1 - 35.1^{\circ}$
c = 12.4387 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 84.020 \ (1)^{\circ}$	T = 295 (2) K
$\beta = 87.447 \ (2)^{\circ}$	Needle, colourless
$\gamma = 65.866 \ (1)^{\circ}$	$0.25\times0.16\times0.15~mm$
$V = 546.09 (3) \text{ Å}^3$	

Data collection

Bruker Kappa-APEXII diffractometer	4847 independent reflections
Radiation source: fine-focus sealed tube	3225 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 295(2) K	$\theta_{\text{max}} = 35.9^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.966, T_{\max} = 0.985$	$k = -11 \rightarrow 11$
16320 measured reflections	$l = -19 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

. .

$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of independent and constrained refinement				
$P(F^2) = 0.166$	$w = 1/[\sigma^2(F_0^2) + (0.0909P)^2 + 0.037P]$				
$wR(F^2) = 0.166$	where $P = (F_0^2 + 2F_c^2)/3$				
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$				
4847 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$				
185 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$				
2 restraints	Extinction correction: none				
Primary atom site location: structure-invariant direct					

methods

Enactional	atomio	acondinator	and in	otropia	on aquinalar	at isotuonia	diant	acomont	navamators	1 14	1
ггасионаі	aiomic	coorainales	unu is		r equivaler	ii isoiropic	aispic	icemeni	parameters	(A	1
				1	1	1	1		1	1	/

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C4	0.54938 (18)	0.71905 (16)	0.08087 (8)	0.0457 (2)	
C2	0.5104 (2)	0.75165 (17)	-0.03777 (8)	0.0480 (2)	
C1	0.688 (2)	0.690 (2)	-0.1025 (8)	0.086 (3)	0.50(2)
H1A	0.681 (9)	0.652 (8)	-0.180 (5)	0.13 (2)*	0.50(2)
H1B	0.835 (7)	0.591 (6)	-0.069 (3)	0.073 (12)*	0.50(2)
C3	0.282 (2)	0.854 (2)	-0.0782 (10)	0.0607 (17)	0.50(2)
H3A	0.2822	0.8570	-0.1556	0.091*	0.50(2)
H3B	0.2173	0.9894	-0.0576	0.091*	0.50(2)
H3C	0.1970	0.7813	-0.0477	0.091*	0.50(2)
C1A	0.316 (3)	0.828 (3)	-0.0779 (13)	0.081 (4)	0.50(2)
H1A1	0.279 (7)	0.864 (7)	-0.154 (4)	0.095 (12)*	0.50(2)
H1A2	0.199 (5)	0.882 (6)	-0.042 (3)	0.052 (11)*	0.50(2)
C3A	0.7115 (19)	0.6816 (18)	-0.1034 (8)	0.075 (3)	0.50(2)
H3A1	0.6735	0.7183	-0.1785	0.112*	0.50(2)
H3A2	0.7867	0.5373	-0.0907	0.112*	0.50(2)
H3A3	0.8061	0.7432	-0.0840	0.112*	0.50(2)
C5	0.34851 (15)	0.77482 (14)	0.24864 (7)	0.03768 (18)	
C6	0.16421 (15)	0.74879 (16)	0.29206 (7)	0.0410 (2)	
Н6	0.0614	0.7390	0.2472	0.049*	
C7	0.13639 (14)	0.73772 (14)	0.40255 (7)	0.03719 (18)	
H7	0.0123	0.7224	0.4319	0.045*	
C8	0.29124 (13)	0.74898 (12)	0.47183 (6)	0.03183 (16)	
C9	0.47621 (13)	0.77413 (13)	0.42489 (7)	0.03407 (17)	
C10	0.50213 (14)	0.79139 (15)	0.31304 (7)	0.03920 (19)	
H10	0.6214	0.8138	0.2824	0.047*	
C11	0.26509 (14)	0.73650 (14)	0.58983 (7)	0.03631 (18)	
C12	0.07174 (17)	0.70661 (17)	0.64152 (7)	0.0448 (2)	
H12A	0.0908	0.6845	0.7185	0.067*	
H12B	0.0611	0.5915	0.6154	0.067*	
H12C	-0.0608	0.8247	0.6239	0.067*	
01	0.72558 (15)	0.63635 (18)	0.12312 (7)	0.0732 (3)	
O2	0.35578 (12)	0.79405 (13)	0.13645 (5)	0.04900 (19)	
O3	0.63603 (12)	0.77904 (13)	0.48540 (6)	0.04826 (19)	
H3	0.6021	0.7732	0.5495	0.072*	

supplementary materials

O4	0.40266 (14)	0.75142	(14)	0.64788 (6)	0.0531 (2)	
Atomic dis	placement parameters	$(Å^2)$				
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C4	0.0455 (5)	0.0536 (5)	0.0339 (4) -0.0166	(4) 0.0071 (3)	-0.0048 (3)
C2	0.0570 (6)	0.0562 (6)	0.0314 (4) -0.0238	(5) 0.0075 (4)	-0.0064 (4)
C1	0.099 (5)	0.120 (8)	0.040 (4) -0.046 (3	5) 0.000 (3)	-0.008 (3)
C3	0.067 (4)	0.076 (3)	0.034 (3) -0.024 (2	3) -0.010 (3)	-0.0037 (18)
C1A	0.080 (6)	0.118 (8)	0.039 (4) -0.033 (2	5) 0.007 (3)	-0.011 (4)
C3A	0.087 (4)	0.081 (4)	0.043 (4) -0.021 (.	3) 0.035 (3)	-0.018 (3)
C5	0.0352 (4)	0.0469 (5)	0.0287 (3) -0.0147	(3) 0.0028 (3)	-0.0036 (3)
C6	0.0343 (4)	0.0595 (5)	0.0323 (4) -0.0215	(4) -0.0005 (3)	-0.0067 (3)
C7	0.0298 (3)	0.0523 (5)	0.0337 (4) -0.0209	(3) 0.0026 (3)	-0.0052 (3)
C8	0.0283 (3)	0.0383 (4)	0.0293 (3) -0.0139	(3) 0.0014 (2)	-0.0044 (3)
C9	0.0279 (3)	0.0418 (4)	0.0342 (4) -0.0154	(3) 0.0010 (3)	-0.0059 (3)
C10	0.0337 (4)	0.0527 (5)	0.0347 (4) -0.0215	(4) 0.0057 (3)	-0.0051 (3)
C11	0.0348 (4)	0.0427 (4)	0.0305 (3) -0.0148	(3) 0.0011 (3)	-0.0037 (3)
C12	0.0419 (5)	0.0586 (6)	0.0341 (4) -0.0221	(4) 0.0059 (3)	-0.0015 (4)
01	0.0458 (4)	0.1051 (8)	0.0423 (4) -0.0040	(5) 0.0040 (3)	-0.0084 (4)
O2	0.0422 (4)	0.0737 (5)	0.0279 (3) -0.0209	(3) 0.0037 (2)	-0.0038 (3)
O3	0.0353 (3)	0.0785 (5)	0.0406 (3) -0.0318	(3) 0.0002 (3)	-0.0103 (3)
O4	0.0502 (4)	0.0843 (6)	0.0335 (3) -0.0355	(4) -0.0030 (3)	-0.0075 (3)

Geometric parameters (Å, °)

C4—O1	1.1920 (14)	C5—C10	1.3751 (12)
C4—O2	1.3618 (12)	C5—O2	1.3886 (10)
C4—C2	1.4872 (14)	C5—C6	1.3912 (12)
C2—C1A	1.281 (14)	C6—C7	1.3770 (12)
C2—C1	1.339 (10)	С6—Н6	0.9300
C2—C3A	1.464 (9)	C7—C8	1.4034 (11)
C2—C3	1.476 (14)	С7—Н7	0.9300
C1—H1A	1.04 (6)	C8—C9	1.4076 (11)
C1—H1B	1.03 (4)	C8—C11	1.4680 (11)
С3—НЗА	0.9600	С9—ОЗ	1.3425 (10)
С3—Н3В	0.9600	C9—C10	1.3932 (12)
С3—НЗС	0.9600	С10—Н10	0.9300
C1A—H1A1	0.97 (5)	C11—O4	1.2346 (11)
C1A—H1A2	0.85 (4)	C11—C12	1.4952 (13)
C3A—H1A	1.04 (6)	C12—H12A	0.9600
C3A—H1B	0.91 (4)	C12—H12B	0.9600
C3A—H3A1	0.9600	C12—H12C	0.9600
C3A—H3A2	0.9600	О3—Н3	0.8200
СЗА—НЗАЗ	0.9600		
O1—C4—O2	123.66 (9)	С2—С3А—НЗАЗ	109.5
O1—C4—C2	125.19 (10)	НЗА1—СЗА—НЗАЗ	109.5
O2—C4—C2	111.14 (9)	НЗА2—СЗА—НЗАЗ	109.5

C1A—C2—C1	120.4 (9)	C10—C5—O2		123.66 (8)
C1A—C2—C3A	123.4 (9)	C10—C5—C6		121.75 (8)
C1—C2—C3	123.5 (8)	O2—C5—C6		114.48 (8)
C3A—C2—C3	126.5 (7)	C7—C6—C5		118.95 (8)
C1A—C2—C4	122.1 (8)	С7—С6—Н6		120.5
C1—C2—C4	117.5 (5)	С5—С6—Н6		120.5
C3A—C2—C4	114.4 (5)	С6—С7—С8		121.44 (7)
C3—C2—C4	119.0 (6)	С6—С7—Н7		119.3
C2—C1—H1A	122 (3)	С8—С7—Н7		119.3
C2—C1—H1B	118 (2)	С7—С8—С9		117.93 (7)
H1A—C1—H1B	108 (4)	C7—C8—C11		122.26 (7)
С2—С3—НЗА	109.5	C9—C8—C11		119.81 (7)
С2—С3—Н3В	109.5	O3—C9—C10		117.31 (7)
НЗА—СЗ—НЗВ	109.5	O3—C9—C8		121.74 (7)
С2—С3—Н3С	109.5	С10—С9—С8		120.93 (7)
НЗА—СЗ—НЗС	109.5	C5—C10—C9		118.93 (7)
НЗВ—СЗ—НЗС	109.5	С5—С10—Н10		120.5
C2—C3—H1A2	118 (3)	С9—С10—Н10		120.5
H3A—C3—H1A2	132.3	O4—C11—C8		120.27 (8)
H1A1—C3—H1A2	131 (5)	O4-C11-C12		119.01 (8)
C2C1AH1A1	126 (3)	C8—C11—C12		120.72 (7)
C2C1AH1A2	124 (3)	C11—C12—H12A		109.5
H1A1—C1A—H1A2	108 (4)	C11—C12—H12B		109.5
C2—C3A—H1A	111 (4)	H12A—C12—H12B		109.5
C2—C3A—H1B	116 (3)	C11—C12—H12C		109.5
H1A—C3A—H1B	117 (4)	H12A—C12—H12C		109.5
C2—C3A—H3A1	109.5	H12B-C12-H12C		109.5
С2—С3А—НЗА2	109.5	C4—O2—C5		121.97 (8)
НЗА1—СЗА—НЗА2	109.5	С9—О3—Н3		109.5
O1—C4—C2—C1A	174.4 (10)	C7—C8—C9—C10		1.28 (13)
O2—C4—C2—C1A	-4.8 (10)	C11—C8—C9—C10		-178.40 (8)
O1—C4—C2—C1	-2.7 (8)	O2—C5—C10—C9		178.52 (9)
O2—C4—C2—C1	178.1 (8)	C6—C5—C10—C9		2.40 (15)
O1—C4—C2—C3A	-2.9 (6)	O3—C9—C10—C5		176.14 (8)
O2—C4—C2—C3A	177.9 (6)	C8—C9—C10—C5		-2.76 (14)
O1—C4—C2—C3	178.9 (6)	C7—C8—C11—O4		-178.43 (9)
O2—C4—C2—C3	-0.2 (6)	C9-C8-C11-O4		1.23 (14)
C10—C5—C6—C7	-0.55 (15)	C7—C8—C11—C12		1.28 (14)
O2—C5—C6—C7	-177.00 (8)	C9—C8—C11—C12		-179.05 (8)
C5—C6—C7—C8	-1.00 (15)	O1—C4—O2—C5		-1.74 (18)
C6—C7—C8—C9	0.62 (14)	C2—C4—O2—C5		177.45 (9)
C6—C7—C8—C11	-179.70 (8)	C10—C5—O2—C4		38.32 (15)
C7—C8—C9—O3	-177.57 (8)	C6—C5—O2—C4		-145.30 (10)
C11—C8—C9—O3	2.75 (13)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O3—H3…O4	0.82	1.81	2.5334 (10)	147

supplementary materials

C10—H10…O1	0.93	2.40	2.8163 (12)	107
C7—H7···O3 ⁱ	0.93	2.43	3.3372 (11)	164
C12—H12C····Cg ⁱⁱ	0.96	2.81	3.6718 (12)	149
Symmetry codes: (i) $x-1$, y , z ; (ii) $-x$, $-y+2$, $-z+1$.				

Fig. 1

Fig. 2

